3.118 \(\int \frac{(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\tan ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=103 \[ \frac{2 \sqrt [4]{-1} a (B+i A) \tan ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )}{d}-\frac{2 a (B+i A)}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2 a (A-i B)}{d \sqrt{\tan (c+d x)}}-\frac{2 a A}{5 d \tan ^{\frac{5}{2}}(c+d x)} \]

[Out]

(2*(-1)^(1/4)*a*(I*A + B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])/d - (2*a*A)/(5*d*Tan[c + d*x]^(5/2)) - (2*a*(
I*A + B))/(3*d*Tan[c + d*x]^(3/2)) + (2*a*(A - I*B))/(d*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.154533, antiderivative size = 103, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 34, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {3591, 3529, 3533, 205} \[ \frac{2 \sqrt [4]{-1} a (B+i A) \tan ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )}{d}-\frac{2 a (B+i A)}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2 a (A-i B)}{d \sqrt{\tan (c+d x)}}-\frac{2 a A}{5 d \tan ^{\frac{5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(7/2),x]

[Out]

(2*(-1)^(1/4)*a*(I*A + B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])/d - (2*a*A)/(5*d*Tan[c + d*x]^(5/2)) - (2*a*(
I*A + B))/(3*d*Tan[c + d*x]^(3/2)) + (2*a*(A - I*B))/(d*Sqrt[Tan[c + d*x]])

Rule 3591

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b*c - a*d)*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2
 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[a*A*c + b*B*c + A*b*d - a*B*d - (A*b*
c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\tan ^{\frac{7}{2}}(c+d x)} \, dx &=-\frac{2 a A}{5 d \tan ^{\frac{5}{2}}(c+d x)}+\int \frac{a (i A+B)-a (A-i B) \tan (c+d x)}{\tan ^{\frac{5}{2}}(c+d x)} \, dx\\ &=-\frac{2 a A}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{2 a (i A+B)}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\int \frac{-a (A-i B)-a (i A+B) \tan (c+d x)}{\tan ^{\frac{3}{2}}(c+d x)} \, dx\\ &=-\frac{2 a A}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{2 a (i A+B)}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2 a (A-i B)}{d \sqrt{\tan (c+d x)}}+\int \frac{-a (i A+B)+a (A-i B) \tan (c+d x)}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{2 a A}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{2 a (i A+B)}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2 a (A-i B)}{d \sqrt{\tan (c+d x)}}+\frac{\left (2 a^2 (i A+B)^2\right ) \operatorname{Subst}\left (\int \frac{1}{-a (i A+B)-a (A-i B) x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=\frac{2 \sqrt [4]{-1} a (i A+B) \tan ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )}{d}-\frac{2 a A}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{2 a (i A+B)}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2 a (A-i B)}{d \sqrt{\tan (c+d x)}}\\ \end{align*}

Mathematica [B]  time = 3.77974, size = 265, normalized size = 2.57 \[ \frac{\cos ^2(c+d x) (\cos (d x)-i \sin (d x)) (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \left (-\frac{2 i e^{-i c} (A-i B) \sqrt{-\frac{i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \tanh ^{-1}\left (\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )}{\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}}-\frac{(\cos (c)-i \sin (c)) \csc ^2(c+d x) (5 (B+i A) \sin (2 (c+d x))+3 (6 A-5 i B) \cos (2 (c+d x))-12 A+15 i B)}{15 \sqrt{\tan (c+d x)}}\right )}{d (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(7/2),x]

[Out]

(Cos[c + d*x]^2*(Cos[d*x] - I*Sin[d*x])*(((-2*I)*(A - I*B)*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I
)*(c + d*x)))]*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])/(E^(I*c)*Sqrt[(-1 + E^((2*
I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]) - (Csc[c + d*x]^2*(Cos[c] - I*Sin[c])*(-12*A + (15*I)*B + 3*(6*A -
(5*I)*B)*Cos[2*(c + d*x)] + 5*(I*A + B)*Sin[2*(c + d*x)]))/(15*Sqrt[Tan[c + d*x]]))*(a + I*a*Tan[c + d*x])*(A
+ B*Tan[c + d*x]))/(d*(A*Cos[c + d*x] + B*Sin[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.014, size = 505, normalized size = 4.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x)

[Out]

-2/5*a*A/d/tan(d*x+c)^(5/2)-1/4*I/d*a*A*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+
c)^(1/2)+tan(d*x+c)))+2*a*A/d/tan(d*x+c)^(1/2)-1/4*I/d*a*B*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/
2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*2^(1/2)-2/3/d*a/tan(d*x+c)^(3/2)*B-1/2*I/d*a*B*arctan(-1+2^(1/2)*tan(d*x+c)^(
1/2))*2^(1/2)-2*I/d*a/tan(d*x+c)^(1/2)*B-1/2*I/d*a*B*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))-1/4/d*a*B*ln((
1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*2^(1/2)-1/2/d*a*B*arctan(1+2^(
1/2)*tan(d*x+c)^(1/2))*2^(1/2)-1/2/d*a*B*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)-2/3*I/d*a/tan(d*x+c)^(3/2
)*A-1/2*I/d*a*A*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)-1/2*I/d*a*A*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1
/2))+1/4/d*a*A*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*2^(1/2)+1/2
/d*a*A*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)+1/2/d*a*A*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.89448, size = 254, normalized size = 2.47 \begin{align*} -\frac{15 \,{\left (2 \, \sqrt{2}{\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt{2}{\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right ) - \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (-\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )\right )} a - \frac{8 \,{\left ({\left (15 \, A - 15 i \, B\right )} a \tan \left (d x + c\right )^{2} + 5 \,{\left (-i \, A - B\right )} a \tan \left (d x + c\right ) - 3 \, A a\right )}}{\tan \left (d x + c\right )^{\frac{5}{2}}}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

-1/60*(15*(2*sqrt(2)*((I - 1)*A + (I + 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) + 2*sqrt(2)*
((I - 1)*A + (I + 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) - sqrt(2)*(-(I + 1)*A + (I - 1)*
B)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + sqrt(2)*(-(I + 1)*A + (I - 1)*B)*log(-sqrt(2)*sqrt(tan
(d*x + c)) + tan(d*x + c) + 1))*a - 8*((15*A - 15*I*B)*a*tan(d*x + c)^2 + 5*(-I*A - B)*a*tan(d*x + c) - 3*A*a)
/tan(d*x + c)^(5/2))/d

________________________________________________________________________________________

Fricas [B]  time = 2.03859, size = 1305, normalized size = 12.67 \begin{align*} -\frac{15 \,{\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt{\frac{{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (\frac{{\left (2 \,{\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} +{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt{\frac{{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - 15 \,{\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt{\frac{{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (\frac{{\left (2 \,{\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} -{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt{\frac{{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) -{\left ({\left (184 i \, A + 160 \, B\right )} a e^{\left (6 i \, d x + 6 i \, c\right )} +{\left (-8 i \, A - 80 \, B\right )} a e^{\left (4 i \, d x + 4 i \, c\right )} +{\left (-88 i \, A - 160 \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} +{\left (104 i \, A + 80 \, B\right )} a\right )} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{60 \,{\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

-1/60*(15*(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) - d)*sqrt((4*I*A^2 + 8*A*
B - 4*I*B^2)*a^2/d^2)*log((2*(A - I*B)*a*e^(2*I*d*x + 2*I*c) + (d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*A^2 + 8*A
*B - 4*I*B^2)*a^2/d^2)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((I*
A + B)*a)) - 15*(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) - d)*sqrt((4*I*A^2
+ 8*A*B - 4*I*B^2)*a^2/d^2)*log((2*(A - I*B)*a*e^(2*I*d*x + 2*I*c) - (d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*A^2
 + 8*A*B - 4*I*B^2)*a^2/d^2)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c
)/((I*A + B)*a)) - ((184*I*A + 160*B)*a*e^(6*I*d*x + 6*I*c) + (-8*I*A - 80*B)*a*e^(4*I*d*x + 4*I*c) + (-88*I*A
 - 160*B)*a*e^(2*I*d*x + 2*I*c) + (104*I*A + 80*B)*a)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) +
 1)))/(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) - d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.24627, size = 127, normalized size = 1.23 \begin{align*} \frac{\left (i + 1\right ) \, \sqrt{2}{\left (-4 i \, A a - 4 \, B a\right )} \arctan \left (-\left (\frac{1}{2} i - \frac{1}{2}\right ) \, \sqrt{2} \sqrt{\tan \left (d x + c\right )}\right )}{4 \, d} + \frac{30 \, A a \tan \left (d x + c\right )^{2} - 30 i \, B a \tan \left (d x + c\right )^{2} - 10 i \, A a \tan \left (d x + c\right ) - 10 \, B a \tan \left (d x + c\right ) - 6 \, A a}{15 \, d \tan \left (d x + c\right )^{\frac{5}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="giac")

[Out]

(1/4*I + 1/4)*sqrt(2)*(-4*I*A*a - 4*B*a)*arctan(-(1/2*I - 1/2)*sqrt(2)*sqrt(tan(d*x + c)))/d + 1/15*(30*A*a*ta
n(d*x + c)^2 - 30*I*B*a*tan(d*x + c)^2 - 10*I*A*a*tan(d*x + c) - 10*B*a*tan(d*x + c) - 6*A*a)/(d*tan(d*x + c)^
(5/2))